A Brighter Future – From the Ground Up

In June 2012, Tronox joined forces with Exxaro Mineral Sands, creating the world’s largest fully integrated producer of titanium feedstock and TiO₂ pigment. We believe that our new structure affords us compelling strategic advantages, including an enhanced global platform from which to grow our business and harness the full potential of the TiO₂ value chain. But with big ambition comes an equally big obligation to promote sustainable development and grow the right way so that all Tronox stakeholders can share in our success.

This corporate responsibility report, which follows the Global Reporting Initiative (GRI) framework, reflects our conviction that long-term economic profitability and outstanding corporate citizenship are complementary sustainability objectives. It details how our 3,400 employees are embracing value-creating opportunities and managing risks stemming from economic, environmental and social factors to ensure a more promising future for our customers, communities, employees and shareholders.

In our Mining Sands division, Tronox has acquired a strong operation with a proud tradition of social responsibility and environmental sustainability. This commitment is a legacy we are upholding, as evidenced by the US$6.6 million our three mines spent in 2012 to rehabilitate a total of 366 hectares (904 acres) of mined land. Tronox will continue to rehabilitate land at our existing mines in Western Australia and South Africa, as well as our new Fairbreeze mine in KwaZulu-Natal, South Africa – expected to begin production in mid-2014. The process involves restoring the landscape with its original top soil, and either replanting native flora or planting cash-generating agricultural crops for local farmers.

Tronox is meeting the challenge of sustainable development across our business. At our 18 locations around the world, we are applying a keen focus on innovation and operational efficiency to reduce per-production ton power and water consumption as well as waste and carbon emissions.

Tronox is also proud of its long-term safety performance, which is detailed later in this report. We have built a culture of continuous improvement that has contributed to a safer, more productive workforce. In Namakwa Sands, South Africa, for example, employees take responsibility not only for themselves but also for another colleague. This behavioral-based safety approach contributed to Namakwa’s best health-and-safety performance since its inception in 1994.

To empower our communities, we are engaging and partnering with local businesses – including women- and minority-owned businesses – around the world. For example, at KZN Sands, Tronox has supported the creation of Gabadela Laundry Services, a locally owned and operated Black Economic Empowerment (BEE) company. Gabadela employs 14 local workers onsite at KZN’s Central Processing Complex and has diversified to providing services to a number of other businesses in the KwaZulu-Natal region.

‘Today, these collective sustainability efforts are more aligned than ever with the financial obligations of global businesses to their shareholders. The strain placed on the earth from rising carbon emissions and demand for scarce resources such as water and energy has spurred people and governments alike to demand greater responsibility from the corporate sector. Businesses that don’t adapt to the new realities will be at a disadvantage as they seek to hire the best workers, access capital and operate and compete globally in the 21st century.

By establishing ourselves as a leading corporate citizen, everyone wins. Our customers are more assured about their supply chains. Our employees work in a safe environment conducive to high levels of productivity. Local communities benefit from the economic value – estimated in 2012 at US$2.3 billion – that Tronox distributes to them either directly or indirectly. And, our shareholders do better because we are running a lean and efficient operation that is welcomed in its areas of operation and built to last.

In year one of measuring our sustainability efforts under the GRI framework, this review illustrates the prosocial sustainability plays in the direction of our business. We are determined to build upon this case study and work forward to working with all of our stakeholders to secure a brighter tomorrow.

TOM CASEY
Chairman and Chief Executive Officer

Tronox Limited ("Tronox") is a public limited company registered under the laws of the State of Western Australia, Australia. The company is listed on the New York Stock Exchange ("TRX"). The company has corporate offices in Perth, Western Australia, Australia; Stamford, Connecticut, USA; and Sandton, Gauteng, South Africa.

Tronox mines and processes titanium ore, zircon and other minerals, and manufactures titanium dioxide ("TiO₂"); pigments that add brightness and durability to paints, plastics, paper, and other everyday products. The company’s diverse global workforce is committed to safe and sustainable business practices that bring value to its shareholders, customers, and business partners, and brightens people’s lives. Tronox has mining and manufacturing operations in North America, Europe, South Africa and Australia.

The New Tronox: Embracing Sustainability in a Vertically Integrated Global Enterprise

On the Cover

The illustration on the cover represents Tronox’s core value of responsibility. The eye is symbolic of both Tronox watching the world and the world watching Tronox. A responsibility to our community, our environment and our corporate citizenship is deeply ingrained in the Tronox culture – and the eye serves to reinforce the company’s commitment. For more about our Values, see page 17.
Our Company

Tronox Limited is a leading international producer of titanium ore and TiO₂ pigment.

While we conduct our business through two divisions, Mineral Sands and Pigment & Electrolytic, both units work in unison to capture the full range of value inherent in the industry. Our 3,400 dedicated full-time employees serve more than 1,000 customers around the globe, assuring them a responsible link in their supply chains and helping them bring to market the high-quality consumer and industrial products of a world on the move.

We extract titanium-rich ore and other minerals from our two South African mines at KZN Sands and Namakwa Sands, and from the Cooljarloo mine in Western Australia. We process the ore to separate and concentrate the minerals ilmenite, rutile, leucoxene, staurolite, and zircon, and to produce synthetic rutile and titanium slag, as well as pig iron and activated carbon. In this process, we return the remaining soil to the mining sites and fully restore the natural habitat. The titanium feedstock is sent to our three chloride-based pigment plants in Hamilton, USA; Botlek, Netherlands; and Kwinana, Australia. Since we produce more titanium feedstock than our pigment production requires, we are able to sell the remaining feedstock to third parties along with the zircon, pig iron, staurolite and activated carbon that we produce.

Tronox also operates two electrolytic plants in the USA at Henderson, and Hamilton. Our electrolytic products serve the paper, battery, automotive and pharmaceutical industries.

While we conduct our business through two divisions, Mineral Sands and Pigment & Electrolytic, both units work in unison to capture the full range of value inherent in the industry. Our 3,400 dedicated full-time employees serve more than 1,000 customers around the globe, assuring them a responsible link in their supply chains and helping them bring to market the high-quality consumer and industrial products of a world on the move.

We extract titanium-rich ore and other minerals from our two South African mines at KZN Sands and Namakwa Sands, and from the Cooljarloo mine in Western Australia. We process the ore to separate and concentrate the minerals ilmenite, rutile, leucoxene, staurolite, and zircon, and to produce synthetic rutile and titanium slag, as well as pig iron and activated carbon. In this process, we return the remaining soil to the mining sites and fully restore the natural habitat. The titanium feedstock is sent to our three chloride-based pigment plants in Hamilton, USA; Botlek, Netherlands; and Kwinana, Australia. Since we produce more titanium feedstock than our pigment production requires, we are able to sell the remaining feedstock to third parties along with the zircon, pig iron, staurolite and activated carbon that we produce.

Tronox also operates two electrolytic plants in the USA at Henderson, and Hamilton. Our electrolytic products serve the paper, battery, automotive and pharmaceutical industries.

“While we conduct our business through two divisions, Mineral Sands and Pigment & Electrolytic, both units work in unison to capture the full range of value inherent in the industry. Our 3,400 dedicated full-time employees serve more than 1,000 customers around the globe, assuring them a responsible link in their supply chains and helping them bring to market the high-quality consumer and industrial products of a world on the move. We extract titanium-rich ore and other minerals from our two South African mines at KZN Sands and Namakwa Sands, and from the Cooljarloo mine in Western Australia. We process the ore to separate and concentrate the minerals ilmenite, rutile, leucoxene, staurolite, and zircon, and to produce synthetic rutile and titanium slag, as well as pig iron and activated carbon. In this process, we return the remaining soil to the mining sites and fully restore the natural habitat. The titanium feedstock is sent to our three chloride-based pigment plants in Hamilton, USA; Botlek, Netherlands; and Kwinana, Australia. Since we produce more titanium feedstock than our pigment production requires, we are able to sell the remaining feedstock to third parties along with the zircon, pig iron, staurolite and activated carbon that we produce. Tronox also operates two electrolytic plants in the USA at Henderson, and Hamilton. Our electrolytic products serve the paper, battery, automotive and pharmaceutical industries.

“We are making sustainability a hallmark of our business, from our mines to our pigment operations. Working with all of our stakeholders, we are driving process innovations that deliver continuous improvements and contribute to a cleaner environment.”

Fer Klinckhamers
VP, Corporate Sustainability
Botlek, Netherlands
Govermnent and Organization

Tronox Limited’s board and affairs are managed by a multinational executive management team under the oversight of our Board of Directors, which is comprised of nine members. Three of our Directors are appointed by Exxaro, which is the holder of Class B Shares resulting from the June 2012 transaction in which Tronox acquired 74 percent of its South African mineral sands operations and Exxaro’s 50 percent interest in the Tiwest joint venture it had with Tronox in Western Australia.

The listing standards of the New York Stock Exchange (NYSE), as well as our Corporate Governance Guidelines, require that a majority of our Board of Directors be comprised of independent directors. Our board has affirmatively determined that all of the current directors, except for Messrs. Casey, de Klerk, and Nkosi, are independent. In 2012, the Board of Directors established three committees: Corporate Governance and Nominations; Human Resources and Compensation; and Audit. Each committee is governed by a written charter. A current copy of each charter is available to our shareholders at www.tronox.com.

As a company we also seek to foster communications with other stakeholders, which we define as anyone who can affect or be affected by our actions, objectives and policies. Employees are encouraged to communicate their thoughts and comments through appropriate channels within our business, including to managers, unions and work councils, and to confidential hotlines that they can access by dialing a toll-free telephone number from our locations around the world. They may also email our remarks to the company’s secretary, who will forward it to the intended recipient. In general, all shareholder communications delivered to the company’s秘书y for forwarding to the Board of Directors or specified members will be forwarded in accordance with the shareholder’s instructions. The company’s secretary, however, reserves the right not to forward to members any abusive, threatening or otherwise inappropriate materials.

Shareholders who wish to communicate a matter to the Board of Directors, or to any individual member or members of the Board of Directors, should deliver that communication to the company’s secretary at Tronox Limited, 265 Tresser Boulevard, Suite 1100, Stamford, Connecticut 06902, USA, with a request to forward it to the intended recipient. As a company we also seek to foster communications with other stakeholders, which we define as anyone who can affect or be affected by our actions, objectives and policies. Employees are encouraged to communicate their thoughts and comments through appropriate channels within our business, including to managers, unions and work councils, and to confidential hotlines that they can access by dialing a toll-free telephone number from our locations around the world. They may also email our remarks to the company’s secretary, who will forward it to the intended recipient. In general, all shareholder communications delivered to the company’s secretary for forwarding to the Board of Directors or specified members will be forwarded in accordance with the shareholder’s instructions. The company’s secretary, however, reserves the right not to forward to members any abusive, threatening or otherwise inappropriate materials.

Products

Pigment

TITANIUM DIOXIDE (TiO2)

Titanium dioxide is a white inorganic compound used primarily in the production of paints, printing inks, paper and plastic products. Titanium dioxide has a remarkably high refractive index and exceedingly high reflectance, offering maximum opacity and imparting whiteness and brightness to the products it is used in.

Electrolytic

SODIUM CHLORATE

Sodium chlorate is used in the pulp and paper industry for bleaching pulp. We believe it is preferred for environmental reasons.

ELEMENTAL BORON/BORON TRICHLORIDE

Elemental boron and boron trichloride are used by the automotive industry in airbags and as a reactant in pharmaceutical production, respectively.

ELECTROLYTIC MANGANESE DIOXIDE (EMD)

EMD is used in the production of alkaline primary (non-rechargeable) batteries. It is also the starting material for making lithium manganese oxide (LMO) which is used in the production of rechargeable batteries.

Mineral Sands

RUTILE

Naturally occurring rutile contains a very high titanium concentration and does not need to be upgraded for use in Tronox’s titanium dioxide pigment process. Feedstocks with high concentrations of titanium produce less waste at pigment plants and are more efficient. Rutile is also used for the coating of welding rods, and the production of titanium metal.

CHLORIDE AND SULFATE SLAG

Ilmenite is the most abundant titanium mineral in the world. Tronox upgrades ilmenite using a smelting process to create chloride and sulfate slag, which are converted by pigment manufacturers into titanium dioxide.

SYNTHETIC RUTILE

Tronox also upgrades ilmenite into synthetic rutile using a rotary kiln. Synthetic rutile has a higher titanium content than chloride or sulfate slag, but not as high as natural rutile.

LEUCOXENE

Leucoxene is a naturally occurring mineral formed through the geological alteration of ilmenite. It is an amorphous iron-titanium oxide mineral that contains high levels of titanium. In addition to its use as a raw material for chloride-process TiO2 pigment, higher grades of leucoxene are suitable for welding rod flux manufacture.

ZIRCON

Zircon is a primary co-product of heavy mineral sands mining. Zircon is separated from heavy mineral concentrate after being transported to a mineral separation plant or dry mill. A non-magnetic and non-conductive mineral, zircon is used in the production of ceramics, tiles and sanitary ware, refractories, TV screens, computers and a wide range of industrial and domestic products.

HIGH-PURITY pig iron

High-purity pig iron is a co-product of the titanium slag smelting process. It is typically low in manganese, phosphorus and sulfur and is sold to foundries as a deoxidizing agent for trace elements and to steel producers for iron units.

ACTIVATED CARBON

Activated carbon is derived as a byproduct of the synthetic rutile reduction kiln in which coal is used as both a fuel and a reactant. Activated carbon is used as an absorbent, decolorizer or deodorizer in water, vapor and gas purification/filtration.
To meet future feedstock needs and take advantage of our vertical integration, Tronox continuously seeks new mine sites through our mineral sands exploration programs in Australia, South Africa and elsewhere. Our most notable project is the development of the Fairbreeze mine at the KZN Sands operation in South Africa. After mining, the landscape is fully rehabilitated.

1. **Exploration**

Tronox performs dredge mining, dry mining, hydraulic mining or a combination of these processes at its mines at Cooljarloo, Western Australia, and KZN Sands in South Africa. After mining, the landscape is fully rehabilitated.

2. **Mining and rehabilitation**

The sands extracted from the mines are put through a series of mineral separation processes known as beneficition. In this first phase, a wet concentrator produces heavy mineral concentrate.

3. **Wet concentration**

Heavy mineral concentrate is transported to a mineral separation plant (MSP) for dry beneficition. At the MSP, Tronox uses magnetic and electronic processes to separate the various minerals. Ilmenite is recovered from the magnetic stream. The non-magnetic stream is separated into conductive and non-conductive streams. Zircon and rutile are recovered from the non-conductive material, while zircon and leucoxene are produced from the conductive material. In Australia, the MSP is called a dry mill.

4. **Dry mineral separation**

5. **Upgrading**

Ilmenite is transferred from the MSP to an upgrading plant known as a dry mill. Tronox performs dredge mining, dry mining, hydraulic mining or a combination of these processes at its mines at Cooljarloo, Western Australia, and KZN Sands in South Africa. After mining, the landscape is fully rehabilitated.

6. **Inbound/outbound logistics**

Web assistance from the company’s supply-chain management team, Tronox’s Mineral Sands sales team works with its Pigment ore sourcing team to determine whether to use the ore internally or to sell it to third parties. Tronox determines the optimal shipping method to meet business needs.

7. **Chlorination and purification**

After arriving at any one of three Tronox TiO₂ pigment plants – located in Hamilton, MS, USA; Rottek, Netherlands; and Kwinana, Western Australia – feedstock is blended to formulate the optimal production mix. It is then processed in a chlorinator to create titanium tetrachloride (TiCl₄). Non-volatile minerals and other impurities are removed in a purification process.

8. **Oxidation**

9. **Finishing and surface treatment**

Raw TiO₂ pigment is finished and treated to create saleable finished goods pigment. This phase is where pigment is customized for customer-specific applications according to their unique needs. Differentiators include particle sizes, surface coatings and dry or slurry formulations.

10. **Outbound logistics**

Tronox’s supply-chain management team arranges the transport of pigment outbound to customers around the world.

"What does it mean to operate sustainably in a vertically integrated global enterprise? It means that from one end of the supply chain to the other, we leverage best practices from around the world and develop new solutions to conserve scarce resources like energy and water while limiting waste and carbon emissions. In Australia, Tronox has been recognized for the way that we have engaged the workforce in our energy efficiency opportunity program, which has delivered savings from small lighting initiatives to large projects which reduce the energy consumption of gas fired drivers."

Karen Boyce
Manager, Corporate Sustainability & Energy
Kusuma Pigment Plant, Australia
Tronox has implemented a growth strategy to double its profits by 2017. The company believes that most forms of titanium feedstock used in the pigment production process will be in limited supply in the medium term. The full integration of the mineral sands and titanium dioxide divisions empowers Tronox with key advantages that make its business more economically sustainable than those of separate upstream and downstream enterprises. The company is protected against price increases and supply shortages that the industry frequently experiences because it is the only TiO₂ pigment manufacturer that has 100 percent of its supply needs under common ownership. Tronox, therefore, has an advantage over its competitors because it can provide greater long-term supply assurances to customers. And since Tronox mines more titanium ore than it currently consumes, it has the unique ability to expand pigment capacity – either through acquisitions or greenfield projects – without having to secure the necessary feedstock from another party. The company also has the option of selling feedstock to third parties, enabling it to harness strength wherever it appears in the value chain.

Sustainable Growth: The Tronox Formula

We believe in sustainable growth that empowers not only our shareholders but also our employees and communities. Tronox strives to engage local business partners wherever we operate, and we continue to build upon our strong track record of working with women and minority business owners.

Even in a year of tremendous challenge for our industry, Tronox generated and distributed significant direct economic value for all of our stakeholders.

Gabadela Laundry Services

For the past three years, Tronox KZN Sands in KwaZulu-Natal, South Africa, has supported the creation of Gabadela Laundry Services, a locally owned and operated Black Economic Empowerment (BEE) company. Gabadela employs 14 local workers onsite at KZN’s Central Processing Complex and has diversified to providing services to a number of other businesses in the KwaZulu-Natal region.
The 21st century link between environmental sustainability and global leadership in mining and manufacturing is inseparable.

As the world forges ahead, global resources are coming under increasing financial – and supply constraints. By becoming more efficient and reducing our ecological impact, Tronox is building a stronger business, a cleaner environment and more sustainable communities where we live and operate. We are maximizing productivity with the energy, water and chemicals that we use – and minimizing the water and carbon emissions we generate.

Tronox’s commitment to sustainability manifests itself at our mines in South Africa and Western Australia in the protection of native flora and fauna, energy and water conservation, and the full rehabilitation of the sites. These efforts have been highlighted by local and national governments as well as numerous environmental organizations.

Environmental Performance

Contents

- Energy consumption
- Water withdrawal
- Habitats protected or restored
- Greenhouse gas emissions
- Waste

More Productivity, Less Environmental Strain

Heavily Tronox’s improved control systems help both the environment and the company’s bottom line.

Tronox’s process for converting titanium feedstock into finished TiO₂ at its three global pigment facilities requires the use of petroleum coke (petcoke) and oxygen. Both inputs contribute a substantial share of pigment plant costs, energy use and greenhouse gas emissions.

In 2006, Tronox’s Botlek plant in the Netherlands invested in improved control systems to become more efficient consumers of petcoke and oxygen. The result: Heavy reduction in petcoke consumption, maintenance costs and greenhouse gas emissions.

In 2008, Botlek’s carbon emissions are significantly lower than those at a projected reduction for pet coke and 7.1 percent for oxygen could save shareholders US$4.3 million annually.

“By strengthening the controls and accuracy of key instruments in our process and operating more on the edge, Tronox is cutting down on carbon emissions maximizing productivity,” said Ruud Robbe, Team Leader Process Engineering, who played an important role in the process implemented at Botlek.

“There’s a misconception among some that taking action to minimize greenhouse gases is necessarily a financial burden to industry. At Tronox, we are proving that running efficient, sustainable operations makes both environmental and financial sense.”

Ruud Robbe
Team Leader Process Engineering
Botlek, Netherlands
Recirculating Carbon Monoxide Gas at KZN

Tronox’s KZN Sands operations in South Africa set out in 2012 to implement a project to modify processes to recirculate carbon monoxide (CO) gas, which is formed as a waste during the furnace smelting operations. The modification will enable the operation to utilize the CO gas as a heating source at various plants on the central processing complex, including the reduction plant, the unroasted ilmenite circuit, the slag plant and the metal treatment plant. By using CO gas at these plants, the requirement for methane (CH₄) is significantly reduced. This improvement project will effectively reduce the energy consumed by burning methane gas and save on cost. A 30 percent reduction in methane gas consumption is possible and will reduce direct carbon dioxide (CO₂) emissions by approximately 50 percent of our facility’s electricity. The unit is capable of generating up to 500 million cubic meters per metric ton of production.

Botlek Re-using Micronizer Condensate

As part of the Dutch government’s energy efficiency program, all Dutch industrial operations are required to identify opportunities to save energy. These assessments are repeated every five years. Tronox’s initiatives include a project to re-use micronizer condensate.

Cogeneration Plant Lowering Energy Consumption at Kwinana

The cogeneration plant at our Kwinana pigment plant in Australia underwent assessment under the Australian government’s energy efficiency opportunity program in 2012. Energy assessment of the pigment plant is to be completed in 2017. One of the projects implemented from the previous assessment was the installation of swirl fluidized dryers to replace older, less efficient tunnel dryers. This project led to lower energy consumption in this section of the plant, while handling a 40 percent increase in production. The Australian government recognized this project by publishing it in its Energy Efficiency Opportunities annual report.

Water Consumption

Efficient Water Use in Western Australia

Due to the dry Western Australian climate and the limited water supply in the region, we employ a “fit for purpose” strategy at our Kwinana pigment facility. With access to five different water sources with different quality and sustainability characteristics, we channel water toward its most productive uses. For example, our internally recycled brackish water has a high saline content but it is useful for washing down and for slurrying solids that will be sent to effluent treatment. This process frees up water that is suitable for drinking to be available to the community. At the Chaldata mineral processing facility, lower-value groundwater recovered from the immediate plant area is utilized in preference to high-quality ground-water from the adjacent borefield. This recovery not only reduces the use of high-value water, but also helps to improve groundwater quality. Tronox also focuses on reducing total water usage to help reduce the stress on the environment from the drying climate. To assist with this Kwinana has undertaken a water use assessment, to identify targets for efficiency improvements.

Zero-Wastewater Discharge in Arid Henderson

For more than 10 years, the Henderson electrolysytic facility has operated as a zero-wastewater discharge facility. Its evaporative system also recovers water for reuse. The system recovers all water directly from the Hoover Dam at its Henderson reservoir and recovers more than 90 percent for reuse, thereby replacing raw water from the Lake Mead reservoir that would otherwise be consumed. The recycled water has the benefits of higher purity than the raw reservoir water. Off the roughly 10 percent of the wastewater that is not recovered, about 9 percent is lost as steam into the atmosphere and the balance is sent to a double-lined containment pond for evaporation.

Reducing Water Consumption at Hamilton

The Hamilton pigment plant has reduced operating water consumption by an average of 50,000 gallons (190 cubic meters) per day from 2001 – 2012. One of the major projects enabling the strong improvement was installation of an upgraded condensate system. The system replaced nine small and inefficient heat exchangers with two larger and more efficient models.

Less Water at the Namakwa Smelter

At the Namakwa Sands smelter plant, each of the two furnaces is equipped with systems to scrub the furnace gas clean for re-use or environmentally benign flaring to the atmosphere. The gas plant is equipped with a cooling vessel to condense the hot gas from 200˚C (392˚F) to a safe and manageable temperature. Recent improved designs have been installed to increase gas plant reliability and reduce clean water consumption. The gas cooling vessel on Furnace 1 was converted to a quench cooler which is using recycled water at 82 cubic meters per hour (m³/h) at a lower pressure to form droplets instead of a spray mist for cooling. The additional water creates a wet film on the vessel’s shell preventing solid buildup and making the plant more reliable. This mid-2012 conversion resulted in a reduction of 103 cubic meters per day (m³/d) of total plant clean water consumption. Gas Plant 2 will be converted in 2013 resulting in a further reduction of clean water.
Scenes detailing the progression from mining to rehabilitation as sugarcane is harvested.
Cooperation at Rotterdam Complex Driving Sustainability

The Botlek Plant has a strong focus on maximizing the efficient use of raw materials, chemicals and energy. Its presence in the Rotterdam industrial complex, one of the largest in the world, creates unique opportunities. Cooperation between plants can result in improvements that would not be possible on a stand-alone basis. In 2004, the Botlek plant replaced its steam boilers with energy from the neighboring waste incineration plant. By using the steam generated at the adjoining waste facility, approximately 40 percent of Botlek’s direct energy consumption (natural gas, electricity, and steam) was replaced by energy from waste.

Waste Disposal 2012

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Quantity (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste</td>
<td>0.3</td>
</tr>
<tr>
<td>Non-Hazardous Waste</td>
<td>0.12</td>
</tr>
<tr>
<td>Total Waste</td>
<td>0.42</td>
</tr>
</tbody>
</table>

(1) as defined by national legislation at the point of generation

Waste Disposal

Putting Byproducts to Use at Botlek

The production of TiO₂ pigment is unavoidably accompanied by the production of byproducts. Until a few years ago these byproducts had no commercial value and were sent in their entirety to landfills as waste. Today, Tronox Botlek is exploring reuse options for these materials for use as an underlayment in road construction and other purposes. Botlek’s future goal is a zero-solid waste operation.

Waste Becomes Saleable Product at Chandal

An expansion of the activated carbon circuit was undertaken at the Chandal synthetic rutile plant in 2010. This expansion enables the conversion of around 17 metric tons per year of material that was previously returned to the Cooljarloo mine for disposal into a saleable product. Tronox Australian operations benefit from having an integrated waste cycle that allows the return of process wastes from our Chandalas mineral separation and Kwinana pigment plants back to the Cooljarloo mine. This waste is predominantly unusable ore that originated with the mined materials. Through this system the unseced ore is returned to the mine site and used in the rehabilitation process.

Health & Safety

We work safely – all the time

We believe passionately that everyone at Tronox should experience a safe and healthy workplace. We proactively identify and manage risk, conduct ourselves responsibly, exercise good judgment and take responsibility for our actions.

Responsibility

We care for our environment and our communities

We are responsible citizens, as a company and as individuals. We are stewards of our environment and active in our communities.

Teamwork

We will win – as a team

We collaborate effectively, communicate openly, engage honestly, treat others respectfully, and make informed decisions.

Customers

It really is all about the customer

Our collective purpose is to create and sell differentiated and competitive products and services, and to make it easy for our customers – internal and external – to do business with us.

People

People are our most important resource

We create opportunities for development and act intentionally to create a diverse and supportive work environment. Each of us is committed to personal growth and development, embraces change, and learns from our successes and mistakes in order to create a high-performance culture.

Results

We measure, own and deliver results

We encourage creativity and measure results. We set clearly defined and challenging objectives; we own those objectives, and we deliver results, with a relentless focus on operational excellence. We innovate our processes to continuously deliver better results.
Tronox’s employees are the heartbeat of our company and the catalyst for its success.

Our social strategy is geared toward empowering our team members with the skills and opportunities they need to innovate, build fulfilling careers and maximize their contributions to the company. Above all, we focus on health and safety, an emphasis that was validated by the strong safety performance recorded across the company in 2012.

Inside the company, Tronox is working to promote a diverse culture centered on progress and inclusivity. Diversity – manifested in style, thought and background – is a source of company strength that leads to innovation and business success. By welcoming and utilizing it, we are maximizing the creative potential of our people and putting ourselves in the best position to achieve our goals. Likewise, we are committed to the adoption of fair labor practices at our workplaces and our conditions of service will comply with applicable laws and industry standards. We believe in workplace equality and are committed to rooting out discrimination in all its forms.

Tronox’s goal to empower people is not confined within the company. It extends beyond our doors and into our communities. Just as our communities support our operational efforts, so too do we respect indigenous rights and play a constructive role supporting local cultural and economic initiatives.

Social Performance

Visible Felt Leadership

Visible Felt Leadership Ensuring Safety

The health and safety of Tronox’s employees is the top priority of our company. We believe that we are all responsible for one another, and we make clear that there is never a task too important not to take the time to do it safely. In 2012, we held a global summit for our leaders to discuss safety procedures and how we can best root out risk in the workplace. Tronox has implemented Visible Felt Leadership (VFL) programs across our organization to ensure that safety is deeply ingrained in our culture.

Under VFL, leaders take a highly interactive approach to company operations. On a regular basis, leaders will visit the front lines and engage with our employees. These conversations and interventions – in addition to further securing the job site – help company leaders identify critical safety areas that management puts into a checklist.

The Board Takes the Pledge

One of Tronox’s core values, we require an absolute adherence to safety standards at all times and do not tolerate unsafe acts or conditions.

On the job, that translates to complying with laws, standards, and procedures; intervening in unsafe or non-compliant situations; reporting hazards and unsafe conditions; and respecting our environment and our neighbors. It is our goal that every person on any of our worksites leaves in a condition equal to or better than when they arrived.

Combating Alcohol with Breathalyzer Testing

Tronox makes widespread use of breathalyzer tests throughout our Mineral Sands division facilities. In South Africa, a test is required to enter our operating properties. And in Australia, drug and alcohol testing is conducted on a random basis. We believe that our substance abuse prevention measures – in addition to enforcing workplace safety – have had a positive impact in strengthening the communities and families of our employees.

Safety Performance Indicators

Employees Only

<table>
<thead>
<tr>
<th></th>
<th>2012 Injuries</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lost Time</td>
<td>Restricted</td>
<td>Work</td>
<td>Total</td>
<td>Lost Time</td>
<td>Restricted</td>
<td>Work</td>
</tr>
<tr>
<td>Pigment & Electrolytic</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Mineral Sands</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Total Tronox</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

Employees and Contractors

<table>
<thead>
<tr>
<th></th>
<th>2012 Injuries</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lost Time</td>
<td>Restricted</td>
<td>Work</td>
<td>Total</td>
<td>Lost Time</td>
<td>Restricted</td>
<td>Work</td>
</tr>
<tr>
<td>Pigment & Electrolytic</td>
<td>0</td>
<td>0.32</td>
<td>0.72</td>
<td>1.04</td>
<td>0</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>Mineral Sands</td>
<td>0</td>
<td>0.13</td>
<td>0.17</td>
<td>0.30</td>
<td>0</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>Total Tronox</td>
<td>0</td>
<td>0.20</td>
<td>0.37</td>
<td>0.57</td>
<td>0</td>
<td>0.27</td>
<td>0.44</td>
</tr>
</tbody>
</table>

LA1 Workforce by employment type, gender

LA2 Workforce with collective bargaining agreements

LA3 Rates of injury, lost days

LA4 Local community engagement

LA5 Diversity in employment

LA6 SOI

GRI 3-0

Subsequent Event

In July 2013, one of our mineral sands processors experienced its first fatality since 2006. The accident occurred on May 30th at KZN’s Empangeni processing plant, when two team members sustained severe burns from a discharge while transporting molten iron to a transfer car. One colleague died as a result of his burns. The incident was under investigation at the time this report went to print. Tronox deeply mourns the tragic loss of life and has set up a voluntary fund for employees to support the families of both the deceased and injured team members.

"Because safety is one of Tronox’s core values, we require an absolute adherence to safety standards at all times and do not tolerate unsafe acts or conditions."
“Making talent an advantage is our objective. It connects everything we do related to our people and is directly tied into our overall strategy for achieving business results. When executed consistently, we will have best-in-class people processes to benefit every employee and enable superior performance.”

SONJA NARCISSE
SVP, Chief Human Resources Officer
Stamford, USA

At Namakwa Sands, an external independent consultant was used to complete a socio-economic impact assessment in 2011, using a Socio-Economic Assessment Toolset (SEAT). A SEAT report was subsequently completed. This report is also used as input into the Social and Labour Plan which is a pre-requisite for a mining license. Extensive consultation with interested and affected parties including representative trade unions is conducted as part of this process. From this exercise, a number of local economic development projects were identified and are supported by Namakwa Sands. Examples of such projects, focusing mainly on job creation, are a hydroponics farming project, a plastics recycling and manufacturing project, and an abalone farming project.

Examples of such projects, focusing mainly on job creation, are a hydroponics farming project, a plastics recycling and manufacturing project, and an abalone farming project.

At Hamilton, Tronox focuses on gender and race action planning as recommended by the U.S. Dept of Labor/Equal Employment Opportunity Commission.

At Henderson, Tronox participates in the Henderson Industry/Citizen Advisory Panel.”

The organization is made up of local businesses, school teachers, police, fire department, emergency management personnel, and residents of the community, and local industries.

South Africa Mining Charter Scorecard

<table>
<thead>
<tr>
<th>Element Description</th>
<th>Measure</th>
<th>Weighting</th>
<th>Compliance Target by 2012</th>
<th>KZN Sands Performance 2012</th>
<th>Narratives Sands Performance 2012</th>
<th>Compliance Target by 2013</th>
<th>Compliance Target by 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Reporting</td>
<td>Has the company reported its level of compliance with the Charter for the calendar year</td>
<td>Y/N</td>
<td>Annually</td>
<td>100%</td>
<td>100%</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2 Ownership</td>
<td>Minimum target for effective BDSA ownership</td>
<td>Y/N</td>
<td>Annually</td>
<td>*</td>
<td>31%</td>
<td>31%</td>
<td>26%</td>
</tr>
<tr>
<td>3 Procurement</td>
<td>Procurement Spent on BEE entity</td>
<td>Capital Goods</td>
<td>5%</td>
<td>20%</td>
<td>80%</td>
<td>41%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Services</td>
<td>5%</td>
<td>50%</td>
<td>*</td>
<td>61%</td>
<td>*</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>Consumable Goods</td>
<td>2%</td>
<td>25%</td>
<td>*</td>
<td>65%</td>
<td>52%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Multinational suppliers contribution to social fund</td>
<td>Annual</td>
<td>3%</td>
<td>0.5%</td>
<td>*</td>
<td>*</td>
<td>0.5%</td>
</tr>
<tr>
<td>4 Employment Equity (Excluding White Females)</td>
<td>Diversification of the workplace to reflect the country’s demographics to attain competitiveness</td>
<td>Top Management</td>
<td>3%</td>
<td>30%</td>
<td>40%</td>
<td>*</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Senior Management</td>
<td>4%</td>
<td>30%</td>
<td>38%</td>
<td>50%</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle Management</td>
<td>3%</td>
<td>40%</td>
<td>40%</td>
<td>*</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Junior Management</td>
<td>1%</td>
<td>30%</td>
<td>57%</td>
<td>*</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>Core Skills</td>
<td>5%</td>
<td>40%</td>
<td>*</td>
<td>89%</td>
<td>50%</td>
<td>*</td>
</tr>
<tr>
<td>5 Human Resources Development (Excluding White Females)</td>
<td>Development of requisite skills, including support for South African-based research and development initiatives intended to develop solutions in exploration, mining, processing, technology efficiency (energy and water use in mining), beneficiation as well as environmental conservation</td>
<td>SRD expenditure as percentage of total annual payroll (excluding mandatory skills development levy)</td>
<td>25%</td>
<td>4.0%</td>
<td>5.1%</td>
<td>1.6%</td>
<td>4.5%</td>
</tr>
<tr>
<td>6 Housing and living conditions</td>
<td>Conversion and upgrading of hostels to attain the occupancy rate of one person per room</td>
<td>Percentage reduction of occupancy rate toward 2014 target of one person per room</td>
<td>Y/N</td>
<td>50%</td>
<td>NA</td>
<td>NA</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Conversion and upgrading of hostels into family units</td>
<td>Percentage conversion of hostels into family units</td>
<td>Y/N</td>
<td>50%</td>
<td>NA</td>
<td>NA</td>
<td>75%</td>
</tr>
<tr>
<td>7 Mine Community Development</td>
<td>Conduct ethnographic community consultative and collaborative processes to delineate community needs analysis</td>
<td>Implement approved community projects</td>
<td>5%</td>
<td>Up-to-date project implementation</td>
<td>100%</td>
<td>100%</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Project implementation</td>
<td>Percentage of Net Profit After Tax (NPAT) spent on community development</td>
<td>10%</td>
<td>1%</td>
<td>0.46%</td>
<td>0.33%</td>
<td>*</td>
</tr>
<tr>
<td>8 Sustainable Development and Growth</td>
<td>Improvement of the industry’s environmental management</td>
<td>Implementation of approved Environmental Management Programmes (EMPs)</td>
<td>12%</td>
<td>Annual progress achieved against approved EMPs</td>
<td>100%</td>
<td>100%</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Improvement of the industry's mine health and safety</td>
<td>Implementation of the tripartite action plan on health and safety</td>
<td>12%</td>
<td>Annual progress achieved against commitments in tripartite action plan</td>
<td>67%</td>
<td>67%</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Utilization of South African based research facilities for analysis of samples across mining value</td>
<td>Percentage of samples in South African facilities</td>
<td>5%</td>
<td>50%</td>
<td>98%</td>
<td>100%</td>
<td>*</td>
</tr>
</tbody>
</table>

* figures not currently captured; efforts underway to track and report
Sustainability reporting is the core of the GRI Sustainability Reporting framework, which is a generally accepted framework for reporting on an organization’s economic, environmental, and social performance. Our stakeholders—employees and prospective employees, investors, customers, suppliers, communities, governments and regulatory bodies—have demonstrated a high level of interest in our direction and performance in the sustainability arena. We have utilized version 3.1 of the GRI Sustainability Reporting Guidelines to document our activities and performance for the full 2012 calendar year. Going forward, we will report annually.

Our approach is based on the objectives summarized by the GRI: “Sustainability reporting is the practice of measuring, disclosing, and being accountable to internal and external stakeholders for organizational performance towards the goal of sustainable development. A sustainability report should provide a balanced and reasonable representation of the sustainability performance of a reporting organization—both positive and negative contributions.”

This review is global in scope and reflects the complexity of two distinct businesses that combined in June 2012 to create the world’s largest vertically integrated producer of titanium ore and titanium dioxide. One of those businesses, the former Mineral Sands division of Exxaro Resources Ltd., is principally a mining company, while the other business, Tronox, is principally a chemical processing company. Nevertheless, both businesses share common sustainability priorities, and sustainability professionals at our seven operating locations—each of which is under Tronox’s full operational control—have used to document our performance against those priorities. We believe this level of data, combined with required GRI Standard Disclosures, enables Tronox stakeholders to declare that this report complies with the GRI “C” Application Level.

OUR SUSTAINABILITY PRIORITIES, AND THE PERFORMANCE INDICATORS WE HAVE USED TO DOCUMENT OUR RESULTS, ARE AS FOLLOWS:

Economic
• Develop a financially strong, growing business that sustains itself with internally generated cash and delivers attractive returns to shareholders EC1

Environmental
• Reduce energy consumption per unit of production EN13
• Reduce water consumption per unit of production EN8
• Reduce greenhouse gas emissions per unit of production EN16
• Reduce waste per unit of production EN22
• Rehabilitate and restore the land we disturb in our mining operations EN13

Social
• Foster a safe work environment for our people LA1
• Develop a workforce composed of people with varying backgrounds and styles, reflecting our customer base and the communities in which we operate LA1, LA13, LA4
• Engage and support our communities SO1

Although the mineral sands division was not acquired by Tronox until June 15, 2012, and as a result, our publicly reported financial statements for 2012 only include financial data for that division from that date forward, our 2012 sustainability report includes relevant data from those operations for the full year.

Reporting during 2012 presented various challenges for us given the integration of two different companies, yet this report illustrates how we have found common ground across both of our business divisions to report critical information. This baseline information will be used to establish targets for performance improvements in the coming years. If you have questions or are interested in obtaining more information regarding Tronox’s sustainability program, please direct your inquiries to Tronox Limited’s Corporate Communications Department (see back cover for details).

This report is printed on Monadnock Environmentally preferable PC 100®, which is 100% post-consumer recycled material. Monadnock uses post-consumer fiber from waste sources that are carefully collected and controlled. The entire report is printed on papers that are manufactured with 100% renewable green energy, and made 100% carbon neutral.

Design: SVP Partners, Wilton, CT